Products

  • 0
  • 0

Global Titanium Carbide market trend 2025-2029 Preparation technology of titanium carbide-based cermet by News121fx

Russia and Ukraine is an important exporters of oil, natural gas, metals, fertilizers, rare gases and other industrial raw materials. Affected by the further intensification of the tension of the war, the global market has become more worried about the supply of the Titanium Carbide, and panic spreads in the futures market. Prices of commodities such as aluminum and nickel are at recent highs on concerns that supplies will fall. Russia accounts for 49 percent of global exports of nickel, 42 percent of palladium, 26 percent of aluminum and 13 percent of platinum, and is a significant exporter of steel and copper. Palladium is an important metal for sensors and memory. In addition, Russia is the world's largest exporter of nitrogen fertilizer, the second largest exporter of potash fertilizer, and the third-largest exporter of phosphate fertilizer. Ukraine is also an important producer of nitrogen fertilizer. Russia's natural gas supply also has a significant impact on the global fertilizer industry and Titanium Carbide industry, especially in Europe. The price of the Titanium Carbide will also fluctuate to some extent. Russia carries out crude gas separation, and Ukraine is responsible for refined exports. Ukraine supplies 70% of the world's neon, 40% of krypton and 30% of xenon. These three gases are the materials used to make chips.

Overview of titanium carbide TiC powder

Titanium carbide TiC powder is a crystalline solid with gray metallic luster, hard quality, second only to diamond in hardness, and weaker in magnetic properties. The molecular weight is 59.89, the melting point is 3140 °C, the boiling point is 4820 °C, and the relative density is 4.93. Hardness 9-10. Insoluble in water, soluble in nitric acid and aqua regia. It is stable to air below 800°C, corroded by air above 2000°C, and can react with pure oxygen at 1150°C. For the manufacture of cemented carbide, also used as electrodes and abrasives for arc lamps.

{xunruicms_img_title}

Preparation of Titanium Carbide-Based Cermet

1. Chemical Vapor Deposition (CVD)

 The method is a technology for depositing a solid thin film coating on the surface of a substrate by utilizing a space gas-phase chemical reaction. Since the entire reaction of this method is based on thermodynamics, the CVD film has the advantages of good adhesion and coating properties, dense film layer, and high bonding strength of the film base, which can meet the requirements of monolayers such as TiC, TiCN, TiBN, etc., which are not limited to TiN. and multi-layer composite coatings.

 The disadvantage of this method is that the processing temperature is relatively high (generally 900~1200℃). High temperatures cause the steel matrix to soften. After machining, vacuum quenching is required again. The process is more complicated, and the workpiece is easily deformed, resulting in high bending strength of the base material. In addition, harmful waste gas and waste liquid will be produced during the preparation process, which is easy to cause industrial pollution, which contradicts the green industry advocated by the country today, and also limits the comprehensive promotion and use of this law.

 2. Physical Vapor Deposition (PVD)

 The method uses physical processes such as thermal evaporation, sputtering, glow discharge and arc discharge to deposit the desired coating on the surface of the substrate. Including evaporation coating, sputtering coating and ion coating technology. The latter two are the more commonly used PVD technologies for preparing ceramic coatings.

 PVD films usually have residual compressive stress and are prone to cracking and peeling due to brittleness. In addition, it is a linear process with poor adhesion and coating properties. The workpiece needs to be rotated or oscillated during processing, which increases the difficulty and difficulty of designing the vacuum chamber. Problems such as poor coating effect.

 3. Liquid deposition

 This method is a wet chemical film formation method. The basic principle is that through the ligand replacement between ions in the solution, the hydrolysis equilibrium movement of the metal compound is driven, and the metal oxide or hydroxide is deposited on the substrate to form a thin film coating. Since the method can be used for thin film deposition at low temperature/room temperature, there is no need for heat treatment or expensive processing equipment during the preparation process, and the operation is simple.

 The disadvantage of this method is that because it is essentially a reaction in an aqueous solution, the concentration of the solution before and after the reaction is inconsistent during the deposition process, there are many factors affecting the liquid-phase reaction, and the industrial stability is not high.

 4. Thermal spray

 This method refers to heating a wire or powder material to a molten or semi-molten state by a heat source such as flame, arc or plasma, accelerating the formation of high-speed droplets, and then spraying it onto the substrate to form a coating on it. Enhances or regenerates the surface properties of materials for protection and recovery of part size reductions caused by wear, corrosion or machining tolerances. The methods include plasma spray, arc spray and flame spray techniques.

 5. In situ synthesis

 In situ synthesis is the creation of a second phase in a material or a reinforcing phase in a composite during material formation, i.e. it does not exist prior to material preparation, but is generated in situ during material preparation. Material preparation process; in-situ synthesis of dual-phase reinforced particles, no pollution at the interface, and uniform distribution of the second phase, which can avoid the problems encountered in traditional powder metallurgy and smelting processes. With the development of in situ composite technology, its application has been extended to metal-based and ceramic-based materials.

 6. Other synthesis methods

 In addition to the above preparation processes, there are in-situ synthesis, melting and casting, powder metallurgy, mechanical alloying, thermal spraying, self-propagating high temperature synthesis, high-density energy beam coating, sol-gel method, liquid Synthesis of dielectric discharges such as EDM surface strengthening. In actual industrial production and application, the choice of the preparation method of the carbide-based metal-ceramic composite material can be determined according to its own conditions and needs.

Application of titanium carbide TiC powder

1. Titanium carbide powder is used for high temperature thermal spraying materials, welding materials, hard coating materials, military aviation materials, carbides and cermets.

2. Titanium carbide powder is used as an additive in the production of thermistors to improve wear resistance.

3. Titanium carbide powder has a NaCl-type cubic crystal structure. Adding 6% to 30% of TiC to WC-Co cemented carbide forms a TiC-WC solid solution with WC, which can significantly improve red heat, wear resistance, oxidation resistance, Corrosion resistance and other properties, more suitable for processing steel than WC-Co cemented carbide. Alloys such as Ni-Mo can also be used as binders to form tungsten-free cemented carbides, which can improve the turning speed and the precision and finish of the workpiece.

4. Used as tool material and additive for metal bismuth, zinc, cadmium smelting crucible, preparation of semiconductor wear-resistant film, HDD large-capacity storage equipment, is an important part of cemented carbide, used as deoxidizer in steelmaking industry, also Used as cermet, it has the characteristics of high hardness, corrosion resistance and good thermal stability.

Titanium carbide TiC powder price

The price of titanium carbide TiC powder will change randomly with the production cost, transportation cost, international situation and market supply and demand of titanium carbide TiC powder. Tanki New Materials Co.,Ltd aims to help various industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for titanium carbide TiC powder, please feel free to send an inquiry to get the latest price of titanium carbide TiC powder.

Titanium carbide TiC powder suppliers

As a global supplier of titanium carbide TiC powders, Tanki New Materials Ltd. has extensive experience in advanced, engineered material properties, applications and cost-effective manufacturing. The company has successfully developed a series of powder materials (including boron carbide, aluminum carbide, boron carbide, etc.), high-purity target materials, functional ceramics and structural devices, and provides OEM services.

Technical Parameter of Titanium Carbide TiC Powder :
Ti+CCSSiOFree Carbon
99.219.50.020.010.40.2
Titanium Carbide Properties
Other Namestitanium(IV) carbide, TiC powder
CAS No.12070-08-5
Compound FormulaTiC
Molecular Weight40.1
AppearanceBlack Powder
Melting Point3160 °C
Boiling Point4820 °C
Density4.93 g/cm3
Solubility in H2ON/A
Exact Mass59.947946
Titanium Carbide Health & Safety Information
Signal WordN/A
Hazard StatementsN/A
Hazard CodesN/A
Risk CodesN/A
Safety StatementsN/A
Transport InformationN/A


Recently, the first press conference of the Boao Forum For Asia Annual Conference 2022 was held. Two flagship reports were released at the conference: "Asia's Economic Prospects and Integration Process 2022" and "Sustainable Asia and the World 2022-Green Transformation in Action in Asia".

The flagship report points out that the global economy will recover in 2021, and the pace of economic integration in the Asia-Pacific has not stopped even in the face of the impact of COVID-19. The Asia-Pacific region has provided new impetus for the world's economic recovery and institutional building.  

The report gives an outlook on the Asian economy, noting that a number of factors will affect Asian economic growth. For example, mutated strains such as Delta and Omicron have become more transmissible, and many economies are experiencing epidemic peaks again. The Ukraine crisis has triggered geopolitical changes in Asia and Europe, leading to higher commodity prices, which may affect the global energy supply and energy transformation.

The report pointed out that the Asian economy will still be in the process of recovery in 2022, but the growth rate may moderate. According to the report, Asia's economic growth in 2022 is likely to be lower than the current IMF forecast, which is projected at 4.8%.

Affected by several factors, the supply of the Titanium Carbide is erratic and thus its prices are expected to go higher in the future.

Inquery us

Our Latest Products

Global Chromium Diboride CrB2 Powder,Overview of Chromium Diboride CrB2 Powder,Application of Chromium Diboride CrB2 Powder,Chromium diboride CrB2 powder price,Chromium Diboride CrB2 Powder Supplier market trend 2024-2026 Application of Chromium Diboride

The chemical formula of chromium diboride is CrB2, which is a crystal with high hardness and melting point, and is chemically stable. Concentrated nitric acid is insoluble and can be directly mixed with elements or made from active metal reduction ox…

Global Silicon Nitride, Silicon Nitride Overview, Silicon Nitride Applications, Silicon Nitride Suppliers, Silicon Nitride Price market trend 2023-2028 What is silicon nitride used for? by News121fx

Silicon nitride is known as Si3N4 powder, it's a super-hard substance, which has lubricity itself, and is resistant to wear and oxidation at high temperatures.…